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ABSTRACT

Approximate computing is a way to build fast and energy efficient
systems, which provides responses of good enough quality tailored
for different purposes. In this paper, we propose a novel approximate
floating point multiplier which efficiently multiplies two floating
numbers and yields a high precision product. RMAC approximates
the costly mantissa multiplication to a simple addition between the
mantissa of input operands. To tune the level of accuracy, RMAC
looks at the first bit of the input mantissas as well as the first N
bits of the result of addition to dynamically estimate the maximum
multiplication error rate. Then, RMAC decides to either accept the
approximate result or re-execute the exact multiplication. Depending
on the value of N, the proposed RMAC can be configured to achieve
different levels of accuracy. We integrate the proposed RMAC in
AMD southern Island GPU, by replacing RMAC with the exist-
ing floating point units. We test the efficiency and accuracy of the
enhanced GPU on a wide range of applications including multime-
dia and machine learning applications. Our evaluations show that a
GPU enhanced by the proposed RMAC can achieve 5.2x energy-
delay product improvement as opposed to GPU using conventional
FPUs while ensuring less than 2% quality loss. Comparing our ap-
proach with other state-of-the-art approximate multipliers shows
that RMAC can achieve 3.1 x faster and 1.8 x more energy efficient
computations while providing the same quality of service.
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1 INTRODUCTION

The number of smart devices already exceeds the total number of
human beings in the world [1]. As Internet of Things (IoT) becomes
a reality, humans will be significantly outnumbered by networked
devices ready to respond to our every need [2]. In a world in which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

ISLPED 18, July 23-25, 2018, Seattle, WA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5704-3/18/07. .. $15.00
https://doi.org/10.1145/3218603.3218621

humans still experience everything through our five senses, the IoT
systems in the near future will need to interface with us via embed-
ded devices in many ways similar to how it is done today. The large
amount of data generated by IoT challenges our data analysis abil-
ity [3, 4]. As a result, embedded devices, such as mobiles, will need
to become IoT computing nodes, executing algorithms capable of
processing raw sensing streams that traditionally have run on servers.
Unfortunately, existing processing cores cannot sustain the computa-
tional load required by IoT because the necessary algorithms needed
to process IoT data would consume too much battery power, and
fails to provide real-time feedback [3]. In addition, it is favorable to
keep the data private and locally process it [5].

Many of the algorithms that are run on today’s sensor data are at
their heart statistical, and thus do not require exact answers [6—11].
Therefore, approximate computing is a promising emerging para-
digm for improving energy efficiency of these devices [6, 12, 13].
Approximate computing should be performed on the systems which
has less demand on precision, which means the precision could be
dropped for energy conserving purposes. Even though approxima-
tion is not a completely new idea, as it has been widely used in
areas such as lossy compression and numeric computation [14], it is
currently gaining a lot of attention in many research areas.

The development of the Internet of Things will bring a new class
of applications driven by machine learning that can exploit approxi-
mations [15]. Multiplication is one of the most important and com-
mon operations that usually happens in floating point representation.
However, the FPUs are slow and costly in today’s system. Although
there were several attempts to design an approximate multiplier, they
are not capable of changing the level of accuracy at runtime [16-20].
In addition, the hardware that provides dynamic configurability gives
poor accuracy with coarse grain tuning capability [21]. This limits
the number of applications that could benefit from approximation.

In this paper, we introduce a runtime configurable floating point
multiplier, called RMAC, that can adapt to the accuracy require-
ment of each application. RMAC replaces the costly floating point
multiplication with the addition of the two input mantissa. The rea-
soning behind replacing the multiplication with addition comes from
looking at the core of the multiplication, which is just a shifting
and adding process that takes place. In order to adaptively control
the accuracy of RMAC, we use the first N bits of the approximate
mantissa in order to configure the level of approximate. Based on
the estimated error rate, RMAC can accept the approximate result
or re-execute the multiplication in exact hardware. This process is
done by selecting a value of N, where the value of N dictates the
level of accuracy. The efficiency and accuracy of the RMAC was
tested on a wide range of applications running on by integrating
RMAC on AMD Southern Island GPU. The evaluations show that
enhanced GPU can achieve 5.2 x energy-delay product improvement
as opposed to GPU using conventional FPUs while ensuring less
than 2% quality loss. Comparing our approach with state-of-the-art
approximate multipliers shows that RMAC can achieve 3.1x faster
and 1.8 x more energy efficiency computation while providing the
same quality of service.
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2 RELATED WORK

Approximate computing in hardware can be achieved using different
techniques. The first is voltage over scaling (VOS), which dynami-
cally reduces the supply voltage of hardware components for saving
energy, at the cost of accuracy [22-25]. Work in [22] modeled tim-
ing error of arithmetic units subject to VOS and employed error
detection and control at the system level. Work in [23] investigates
the trade-off between energy and quality for image/video processing
applications subject to VOS. Work in [24] employs dynamic seg-
mentation with multi-cycle compensation for errors introduced by
VOS.

The second technique focuses on redesigning the traditional basic
blocks. In the design of multipliers, previous work mostly focused
on truncated multiplication [16—18, 26]. The idea is to neglect some
partial products on multiplication to speed up adder computation.
Work in [18] focused on minimizing the area and increasing the
speed of multiplication. This design redesign a multiplier to use less
logic gates to approximate multiplication. Work in [16] designed
an approximate multiplier which finds the first leading 1 (from the
most significant position) in both multiplication input operands, then
minimizes the size of required multiplier to ensure minimum quality
loss. Although these designs improve multiplication efficiency, they
cannot be integrated on general purpose processors as they set the
multiplier size for each application offline. In addition, these designs
are not adaptive or data dependent as they provide the same level of
approximation regardless of input data.

Recently, work in [21] proposed CFPU, a configurable floating
point multiplier, which multiplies input operands adaptively depend-
ing on the input mantissa. CFPU looks at one the input mantissa and
accordingly decides to run the multiplication in exact or approximate
mode. However, CFPU has the following limitations: (i) it applies
aggressive approximation with possibility of 0% to 50% error rate.
(i) It works in approximate mode only when the the input operand
mantissa has N leading one or zero bits (N is a tuning bits). This sig-
nificantly reduces the amount of the values that can be approximated,
since in real world workloads, there are very few input operands can
satisfy this condition. In contrast, we propose a runtime configurable
approximate multiplier that significantly increases the number of
operands which can multiply on approximate mode, while provid-
ing the similar accuracy as prior work. Our design ensures that the
maximum level of multiplication error rate will never surpass 11.1%.

3 PROPOSED DESIGN

3.1 RMAC Overview

Using the IEEE 754 32 bit floating point notation that is represented
as a binary number string of 32 bits (A3, ...,A) with three different
parts: a sign bit, an exponent part, and a fractional value. The first bit
in the floating point notation (As;) represents the sign bit. The next
8 bits represent the exponent of the binary numbers (A3y,...,A24),
ranging from -126 to 127. The following 23 bits (A3, ...,A})) rep-
resent the fractional part, also known as the mantissa, which has
a value between 1 and 2. Figure 1 (a) shows floating point multi-
plication between A and B input operands. The process starts by
XORing the sign bits of A and B, adding the exponent of A and B and
finally multiplying the two mantissas. To improve the multiplication
efficiency, we need to accelerate the mantissa multiplication process
as this operation is the most costly operation.

In this paper, we propose a runtime configurable floating point
multiplier, called RMAC, that supports multiplication in both ex-
act and approximate modes. In exact mode, the input values are
multiplied using the IEEE-754 32 bit standard method. Figure 1
(b) the approximate model of our proposed design, where mantissa
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Figure 1: The multiplication between A and B floating point
values in (a) IEEE-745 32 bit standard and (b) the proposed
RMAC
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Figure 2: Histogram of the error distribution of the CFPU and
proposed RMAC.

multiplication is replaced with the addition of the mantissas. In case
of an overflow in addition, the extra carry bit is added to the expo-
nent. This is a suitable approximation to fixed-point multiplication
between the mantissas since it can be done by addition and shifting
of the operation between the partial products. In floating point repre-
sentation, the shift is already applied by normalizing the mantissas
values to a value between 1-2, therefore, this addition can be a good
approximation of the mantissa multiplication.

Figure 2 compares the error distribution of the proposed RMAC
with CFPU [21], the state-of-the-art approximate FPU, by multi-
plying 1 million random floating point numbers together. For both
designs, the figure shows the histogram of the multiplication error.
The result shows that RMAC has the maximum quality loss of 11.1%
whereas the CFPU error can be as large as 50%, which is about 5 x
higher than the error rate that RMAC can achieve.

Although, without having a proper tuning process the RMAC’s
error rate will vary by its input operands. For example, if A=5 and
B=10 using floating point multiplication the exact result is 50. Us-
ing the RMAC the approximation is 48, this results in a 4% error.
However, if A=12 and B=12 in exact mode the product is 144, in
approximation mode the result is 128, this results in an 11.1% error.
Therefore, a tuning process that limits the error rate of the RMAC
will allow the user to dictate how much error is acceptable. Thus,
approximation mode will only run, if the product of the two input
operands is below a certain threshold.
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3.2 Accuracy Tuning

In the real world, applications have different sensitivity to approx-
imation. Even within a single application, different parts of codes
might have different sensitivity to approximation. In order to gener-
alize RMAC on general purpose processors, such as CPU and GPU,
RMAC requires being adaptive and data dependent. In fact, RMAC
should be able to control the level of accuracy depending on the
running application. Sine the execution time of mantissa addition
and error estimation is significantly lower than the execution time
of exact mantissa multiplication the error rate for approximation
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Figure 3: The maximum error of the RMAC depending on the first NV bits sequence of the approximated mantissa.
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Figure 4: Tuning process of the proposed RMAC depending on
the input operand mantissa bits.

can be checked for the desired error rate. However, if the desired
error rate is not meet the multiplication can be redone in exact mode
with minimal speed and energy consumption drawbacks. In order
to find a tuning process, every possible value of A was multiplied
with every possible value of B for the IEEE 754 8, 16, and 32 bit
floating point notation. Through this experiment, the result shows
that depending on the first bit of the input mantissas, RMAC follows
different approximation trends. Figure 3 shows the result of the 32-
bit evaluation performed to determine the sensitivity of the RMAC
approximation to input operands. The result also shows that as the
number of consecutive 1’s and 0’s increases the error rate decreases.
Figure 4 shows how the tuning process works. RMAC starts
by detecting the values of the leading mantissa bit of both input
operands. Based on the values of A3 and B3, the RMAC will
perform one of the following techniques to tune the error rate:

3.2.1 Case 1. When both A3 and B3 are 1, the error rate of
RMAC varies mostly with respect to the number of consecutive 0’s in
mantissa C (shown in Figure 3a). RMAC tunes the level of accuracy
by looking at the number of consecutive 0’s in the answer’s mantissa.
Depending on the desired accuracy, the number of consecutive 0’s
changes. In this specific case, the maximum error is 11.1% when the
answer’s mantissa is a full sequence of 0’s and a minimum error of
5.53% when the mantissa has a leading O followed by a 1.

3.2.2 Case 2. When both A3 and Bysz are 0, the accuracy is
determined by the number of consecutive 1’s in the answer’s man-
tissa similar to the first case. Figure 3b shows the the error rate of
RMAC when mantissa C contains N consecutive 1’s. In this case
the maximum error of 11.10% when the answer’s mantissa is a full
sequence of 1’s and a minimum error of 7.43% when the mantissa
has a leading 1 followed by a 0.

3.2.3 Case 3. When both A,z and B»3 are different values, the
value of Cyj3 is considered. If Cr3 is a 0 or 1, the number of con-
secutive 0’s or 1’s in the answers mantissa respectively dictate the
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Figure 5: This example shows the tuning process for the pro-
posed RMAC.

accuracy. Figure 3c shows the error rate of RMAC when C contains
N continuous 1’s or 0’s. For this case, there are two different maxi-
mum and minimum errors because C3 can either be 1 or 0. When
Cy3 is 1, the maximum error is 11.10% when the mantissa C contains
all I’s and a minimum of 6.66% when it has a leading 1 followed by
a 0. When Cy3 is 0 the maximum error is 11.11% when mantissa C
contains all 0’s and a minimum of 4.76% when the mantissa has a
leading O followed by a 1.

The overall trend across all cases illustrates that as the number of
consecutive 1’s or 0’s decreases, the accuracy of the approximation
increases. Figure 5 shows an example of how the tuning process
works by multiplying two floating numbers (50 and -25) together.
Since both A3 and B3 are equal to 1, the design looks for the
number of consecutive 0’s in mantissa C represented by Cy3 to Cj.
This approximation has an error rate of 7.84% because mantissa C
has two consecutive 0’s which corresponds with the results of Figure
3a. Most importantly, this example illustrates how the RMAC can be
tuned for a certain degree of accuracy by selecting different N values.
For example, if the application requires more accuracy (by having
N=1), then this case would run in exact mode. On the other hand, if
the application allows for a broader range of error (by having N=5),
then this case would run in approximation mode.

Figure 6 shows the error distribution of the RMAC error when it
uses different tuning bits, N. As figure shows, while using no tuning
bits the maximum RMAC error rate will be 11.1%. Using N =3
tuning bit, this maximum error rate decreases to 10.7%. Similarly,
further decreasing the N value to 2 and 1 reduces the maximum
multiplication error rate to 9.3% and 6.8%.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

We integrated the proposed RMAC in a GPU southern Island archi-
tecture, Radeon HD 7970 device. We modified Multi2sim, a cycle
accurate CPU-GPU simulator [27] to model the RMAC functionality
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Figure 6: RMAC error distribution on different tuning bits.

Table 1: Comparison of the proposed RMAC with state of the
art approximate multipliers.

Kulkarni[18] | ESSM8 [17] | DRUMSG [16] | CFPU3 [21] | RMAC
Tunable No No No
Max Error 22.2% 11.1% 6.3% 6.3% 6.3%
Energy (pJ) 29 0.58 0.55 0.27 0.15
Execution (ns) 3.5 2.1 1.9 1.6 0.52

Table 2: CFPU and RMAC Hit rate and EDP improvement
while multiplying 1 million randomly generated numbers.

Error Rate 1% 2% 4% 6% 10% 12%
CFPU[21] Hit Rate 34% | 7.5% | 147% | 194% | 31.1% | 37.2%
EDP Improv. | 1.03x | 1.07x | 1.16x | 1.22x | 1.41x 1.54x

Hit Rate 251% | 42.7% [ 71.2% | 93.77% | 99.9% 100%
EDP Improv. | 1.29x | 1.63x | 2.84x | 6.80x | 11.07x | 11.31x

RMAC

on three main floating point units in GPU architecture: MUL, MAC
and MAD. The FPUs are balanced for 6-stage using FloPoCo [28]
and are synthesized by Synopsys Design Compiler in 45-nm ASIC
flow and optimized for power consumption using Synopsys Prime
Time. The energy consumption and execution time of the proposed
RMAC are measured using circuit level simulation, using HSPICE
simulator in 45-nm technology. For the application level, we test the
efficient of the proposed RMAC by running wide range of applica-
tions on GPU as listed below:

OpenCL: We selected four general OpenCL applications includ-
ing Sobel, Roberts, HwtHaarlD and BinomialOption from AMD
APP SDK v2.5 [29]. For image processing applications, we use
Caltech 101 [30] as our dataset, while for other applications we
generate the dataset using random generator. For these applications
we designed average relative error as a quality metric.

Rodinia: We also examine our design on four Rodinia 3.1 bench-
mark suite [31], including K-means, Back Propagation, Lud and
K-Nearest Neighbor(KNN),K-means and K-nearest neighbor are
used in data mining applications and involve dense linear algebra
computation, while Back Propagation is used for training weights
in neural networks. For Rodinia applications (K-means and KNN),
the quality loss defines as the rate of miss classification or miss
clustered points as compared to the same application running on
exact hardware.

Neural Network: We evaluate RMAC efficiency on the three
neural network (NN) applications. NN are realized using OpenCL,
an industry-standard programming model for heterogeneous com-
puting. We used stochastic gradient descent with momentum of 0.1,
learning rate of 0.001 and batch size of 10 for the NN training. The
activation functions are set to “Rectified Linear Unit” clamped at
6. A “Softmax” function is applied to the output layer. For neural
network, the quality loss defines as the difference of classification
accuracy running each application on exact and approximate hard-
ware. The tested applications are listed as follows:

Hand Writing Recognition (MNIST): MNIST is a popular machine
learning data set including images of handwritten digits [32]. The
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Figure 7: Energy efficiency improvement, speedup and qual-
ity loss of different applications running on enhanced GPU
(RMAC with no tuning).

objective is to classify an input picture to one of the ten digits {0
...9%L

Human Activity Recognition (HAR): HAR recognizes human activity
based on 3-axial linear acceleration and 3-axial angular velocity that
have been captured at a constant rate of S0Hz [33].

Voice Recognition (ISOLET): ISOLET [34] consists of speech col-
lected from 150 speakers. The goal of this task is to classify the
vocal signal to one of the 26 English letters.

4.2 Comparison

‘We compare the energy efficiency and execution time of the proposed
RMAC with the state-of-the-art approximate multipliers including:
ESSM [17], Kulkarni[ 18], DRUM [16], and CFPU [21]. Looking at
different designs, we can see that CFPU and proposed RMAC are the
only approximate multipliers with runtime tuning capability. Other
multipliers can configure the level of approximation at offline, thus
they are not data dependent. Table 1 lists the energy efficiency and
execution time of different multipliers in their best configurations
when all designs ensure the similar maximum error rate. Since CFPU
and the proposed RMAC are data dependent, we consider their aver-
age energy and execution time on 1 million randomly generated data.
Our evaluation shows that when the RMAC provides the same level
of error rate (using N = 1), it can provide at least 2.1 x higher energy
efficiency and 1.7 x faster execution as compared to prior designs.
This efficiency mostly comes from the higher percentage of values
that the proposed RMAC can approximately process, compared to
CFPU.

As both CFPU and proposed RMAC are tunable, we compare
their advantages in more details. Table 2 lists the hit rate and the
EDP improvements of the CFPU and proposed RMAC multiplica-
tion running 1 million randomly generated values. The results are
reported when both designs ensure less than a certain amount of
error rate over all tested data. Hit rate is defined as the average time
each multiplier is used in approximate mode to the total number of
multiplications. The EDP improvements are relative to the conven-
tional floating point multipliers. Our evaluation shows that RMAC
can achieve significantly higher hit rate and efficiency as compared
to CFPU while providing the same level of computation quality. For
example, ensuring less than 6% error rate, the CFPU and RMAC
provide 19.5% and 93.7% hit rates and 1.22x and 6.8 x EDP im-
provement as compared to the conventional FPU. The difference of
CFPU and RMAC efficiency grows by increasing the level of accept-
able error rate. This is because the proposed RMAC with no tuning
always ensures less than 11.1% error rate over any data. Therefore,



RMAC: Runtime Configurable Floating Point Multiplier for Approximate Computing

ISLPED ’18, July 23-25, 2018, Seattle, WA, USA

-Energy Efficiency Impr

Hit Rate (%) Hit Rate (%)
93%  95%  97%  98%  100% 8% 0% 1% 2% 100%
a4 4 o4 4
2 5
k=1 =
g - g ~
&3 BE &3 3L
2 PR 2
5 2 2 g
22 24 212 24
£ z £ =z
= 18 = 18
5 5
5 | 5
2, | | | B ) 7 | | I
2bits 4-bits  Gbits  S:bits  0-bits 2hits  4-bits  G-bits  S-bits  0-bits
# of Tuning bits # of Tuning bits
(a) Sobel (b) Blur
Hit Rate (%) Hit Rate (%)
39%  61%  86%  92%  100% S4%  81%  93%  98%  100%
e 4 4 a4 4
5 s
H 3
g ~ 2 -
&3 3 &3 B
% 7 2 7
= g Z
£ s E E]
=l 18 =1 18
& =
o] ]
B B
5 3 | |
B | | | |
=0 0 = 4bits  6bits  8bits  O-bits

4bits  G-bits  8-bits
# of Tuning bits

2-bits 0-bits 2-bits

# of Tuning bits

(e) Kmeans (f) BackPro

Energy Efficiency & Speedup
N

[ISpeedup  =O=Quality Loss

Hit Rate (%) Hit Rate (%)

2% 2% 8%  89%  100% o o o o o
o4 a 4 o4 19% % 6% 8% 100%
E] 5
2 2
s H
~ g -
23 R & s
2 7 2 z
z S P é
g = g
Z T E? <
2 = s =
£, i :
ol 10 = 1 29
& &
g g
@ <
= . 0 =) I I | ]
2bits  4-bits  6-bits  8-bits  O-bits = 2bits  4-bits  G-bits  8bits  O-bits O
# of Tuning bits # of Tuning bits
(c) DwHaar (d) FFT
Hit Rate (%) Hit Rate (%)
4 2% SI%  T3% 5% 100% oA S TR 8% 100%

~ 3
Quality Loss (%)

5
Quality Loss (%)

Energy Efficiency & Speedup

s

Abits_ Gbits  8bits  O-bis

2-bits its 4bits  6-bits  8-bits
# of Tuning bits # of Tuning bits
(g) Lud (h) kNN

Figure 8: Energy consumption and execution time of RMAC in different tuning bits. x-axis is N tuning bits and the left y-axis is

normalize energy and execution, the right axis is accuracy

Table 3: Configuration and energy-delay product improvement of the applications in different computation quality loss.

Quality Loss Sobel | Blur | DwHaar FFT K BackPro | Lud | kNN | Average
0% N Tuning 4-bits | 2-bits 2-bits -bits 2-bits 4-bits 2-bits 2-bits | 2-bits 2.47 %
EDP Improv. | 7.37x | 1.38x 1.36x 1.25x 2.22% 2.99x 1.25x | 1.91x *
1% N Tuning 6-bits | 6-bits 6-bits 4-bits 8-bits 4-bits 6-bits | 8-bits 3.98x
EDP Improv. | 7.94x | 2.81x 3.01x 1.71x 4.02x 4.97x 2.50x | 4.87x )
2% N Tuning 8-bits | 8-bits 8-bits 6-bits 0-bits 0-bits 8-bits | 0-bits 523
EDP Improv. | 8.59x | 5.08x 3.76% 2.50% 4.86x 7.31x 331x | 6.43x -

when an application can accept more than 11.1% maximum error
rate, the RMAC hit rate increases to 100%, meaning that RMAC can
be used with no tuning scheme. However, the CFPU error rate can
increase up to 50% during the approximation. In addition,

4.3 Efficiency in Application Level

Figure 7 shows the energy consumption and execution time of dif-
ferent applications on enhanced GPU normalized to GPU using
conventional FPUs. Considering RMAC with no tuning capability,
our evaluation shows that GPU can provide acceptable quality of ser-
vice over most of the workloads. Our results show that the Rodinia
applications have higher robustness to the RMAC approximation, as
several Rodinia benchmarks are stochastic and approximate in heart.
Instead, the applications such as digital filters show higher quality
loss using approximate RMAC units. In average, our evaluations
indicates that GPU using RMAC can achieve 3.0x and 2.9 higher
energy efficiency and 2.3 x and 1.9x speedup on general OpenCL
and Rodinia applications while ensuring less than 7.4% quality loss.

4.4 Efficiency-Accuracy Trade-off

In order to keep the GPU generality, our enhanced GPU should be
able to accelerate general applications. Therefore, RMAC needs to
be a able to tune the level of accuracy based on the applications
sensitivity and users requirement. Figure 8 shows the impact of the
tuning bits on the quality of different applications. In this figure, the
x-axis shows the number of tuning bits, while the y-axis shows the
normalized energy consumption and execution time of the RMAC.
As our results show, applications have different sensitivity to approx-
imation and they provide the same quality of service on different
RMAC configurations. For instance, to ensure less than 1% quality
loss, application such as Sobel requires four tuning bits, while the

machine learning application such as k-means can satisfy 1% quality
loss using no tuning scheme.

Table 3 lists the configuration and energy-delay product improve-
ment that each application can achieve while losing different level of
quality. To provide less than 1% quality loss, Rodinia benchmarks
can work on more approximation level (lower tuning bits) as com-
pared to general deterministic OpenCL benchmarks. Accepting 1%
quality loss, our evaluation shows that enhanced GPU can achieve
2.1x energy efficiency improvement and 1.7 x speedup (3.6 x EDP
improvement) as compare to GPU using conventional FPUs. Ensur-
ing less than 2% quality loss, this efficiency increases to 2.6 in
energy and 2.0x in execution time (5.2x EDP improvement).

4.5 RMAC for Neural Network Acceleration

Floating point multiplication is one of the essential operations in
neural network (NN) applications. The efficiency and high error
resiliency of the proposed RMAC make it a suitable candidate for
NN acceleration. In this part, we explore the impact of the RMAC on
three popular NN applications: Handwriting digits (MNIST), Speech
Recognition (ISOLET), and Human Activity Recognition (HAR).
For each application, we used well-known network architecture
suggested by the Keras library. Table 4 lists the configuration of the
network and their baseline accuracy. We run these applications on
the conventional and enhanced AMD southern Island GPU using
Multi2sim simulator. As Table 4 shows, the enhanced GPU without
tuning results in about 2% quality loss over different applications,
while it provides in average 2.6 x speedup and 4.1 x energy efficiency
improvement.

The tuning capability of the RMAC gives us more opportunity
to improve the NN efficiency. Looking at NN functionality, all NN
layers do not have the same sensitivity to approximation. For in-
stance, in NN the middle hidden layers show significantly higher
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Table 4: Baseline network topologies, the baseline accuracy and
the quality loss running on enhanced GPU (no tuning).

Network Topology | paceline | Quality Loss

Application .1, 12,8 Accuracy | (RMAC N=0)
Handwritten Digit (MNIST) | 784, 500, 500, 10 97.6% 1.8%
Activity Recognition (HAAR) | 561, 500, 500, 12 96.6% 2.4%
Voice Recognition(ISOLET) | 617, 500, 500, 26 95.5% 2.1%

Table 5: The configuration, EDP improvement of enhanced
GPU using uniform and selective approximation.
0% 05% 1%

Uniform | Selective | Uniform | Selective | Uniform | Selective

Approx | Approx | Approx | Approx | Approx | Approx

MNIST config (N) 2 2,4,4,2 2 4,8,8.4 6 8,0,0,8
EDP 1.38x 2.42x 1.38x 4.73x 3.27x 7.23x

config (N) 2 2,2,4,2 4 4,4,8,4 4 6,6,0,6
ISOLET —Fpp | T43x | 196x | 267% | 3.80% | 267% | 482x

HAAR config (N) 2 2,6,6,2 4 6,8,8,6 6 8,0,0,8
EDP 1.31x 4.54x 2.39x 6.93x 3.22x T.11x

robustness to approximation as compared to the first and last layers.
Therefore, to improve the NN efficiency, our design applies selective
approximation to NN layers based on their sensitivity. We perform
an experiment to find the sensitivity of different layers to RMAC
approximation. To do so, we sequentially put neural network layers
on approximate mode (RMAC with no tuning) and measure the
impact of each layer approximation on the network classification
accuracy. Table 5 shows the configuration of the RMAC in each layer
of neural network using uniform and selective approximation. Our
evaluation shows that both uniform and selective approximation can
perfectly control the classification accuracy of the NN applications
by changing the N tuning. However, the selective approximation
can achieve significantly higher EDP improvement. For instance,
accepting 1% quality loss, enhanced GPU can provide 6.3 x EDP
improvement as compared to GPU using conventional FPUs. This
improvement is 2.1 higher than EDP improvement that uniform
approximation can provide.

4.6 Overhead

The conventional 32-bit floating point multiplier takes 7690 >
area. In order to enable RMAC functionality, the conventional multi-
plier needs to use extra 23-bit fixed-point adder and a tuning circuit.
Our evaluation using Synopsys Design Compiler shows that the
adder and the tuning logic will take 101.5 pm? and 28.3um? area
respectively. Thus, the RMAC will have a 1.68% larger area as com-
pared to the conventional floating point units. This area overhead is
negligible considering the flexibility and efficiency that the RMAC
can provide. In worst case when the RMAC multiplications needs to
re-execute on the exact mode, RMAC will add 2.1% and 1.7% energy
and performance overhead to conventional floating point multiplier.
Our evaluations show that RMAC can compensate this overhead by
running at least 3.6% of the multiplication on approximate mode.
As we showed in section 4.4, the hit rate of RMAC approximation is
much higher than these values, since RMAC ensures less than 11.1%
error rate over any input data.

S CONCLUSION

In this paper, we propose a novel approximate multiplier which
efficiently multiplies floating point values with significantly less
quality loss. RMAC models the costly mantissa multiplication ap-
proximately with a simple addition between the mantissa of input
operands. To tune the error rate, RMAC looks at the first bit of the
input mantissas as well as the first N bits of the added mantissa to
dynamically estimate the maximum multiplication error rate. Then,
RMAC decides to either accept the mantissa addition or re-execute

Mohsen Imani, Ricardo Garcia, Saransh Gupta, and Tajana Rosing

the exact multiplication. Depending on the N value, the proposed
RMAC can be configured to achieve a different level of accuracy. Our
evaluations on wide range of applications show that GPU enhanced
by the proposed RMAC can achieve 5.2x energy-delay product
improvement as compared to GPU using conventional FPUs while
ensuring less than 2% quality loss.
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